- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Julié, Félix-Louis (5)
-
Berti, Emanuele (4)
-
Baibhav, Vishal (1)
-
Buonanno, Alessandra (1)
-
Guilleminot, Pablo (1)
-
Merino, Nelson (1)
-
Olea, Rodrigo (1)
-
Silva, Hector O. (1)
-
Yunes, Nicolás (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Julié, Félix-Louis; Silva, Hector O.; Berti, Emanuele; Yunes, Nicolás (, Physical Review D)
-
Guilleminot, Pablo; Julié, Félix-Louis; Merino, Nelson; Olea, Rodrigo (, Classical and Quantum Gravity)Abstract Based on the insight gained by many authors over the years on the structure of the Einstein–Hilbert, Gauss–Bonnet and Lovelock gravity Lagrangians, we show how to derive-in an elementary fashion-their first-order, generalized ‘Arnowitt–Deser–Misner’ Lagrangian and associated Hamiltonian. To do so, we start from the Lovelock Lagrangian supplemented with the Myers boundary term, which guarantees a Dirichlet variational principle with a surface term of the form π ij δh ij , where π ij is the canonical momentum conjugate to the boundary metric h ij . Then, the first-order Lagrangian density is obtained either by integration of π ij over the metric derivative ∂ w h ij normal to the boundary, or by rewriting the Myers term as a bulk term.more » « less
-
Julié, Félix-Louis; Berti, Emanuele (, Physical Review D)
-
Julié, Félix-Louis; Berti, Emanuele (, Physical Review D)
An official website of the United States government
